Second order linear ordinary differential equations with turning points and singularities. I.
نویسندگان
چکیده
منابع مشابه
Movable algebraic singularities of second-order ordinary differential equations
Any nonlinear equation of the form y′′ = ∑N n=0 an(z)y n has a (generally branched) solution with leading order behaviour proportional to (z − z0) about a point z0, where the coefficients an are analytic at z0 and aN (z0) 6= 0. We consider the subclass of equations for which each possible leading order term of this form corresponds to a one-parameter family of solutions represented near z0 by a...
متن کاملSingular Eigenvalue Problems for Second Order Linear Ordinary Differential Equations
We consider linear differential equations of the form (p(t)x′)′ + λq(t)x = 0 (p(t) > 0, q(t) > 0) (A) on an infinite interval [a,∞) and study the problem of finding those values of λ for which (A) has principal solutions x0(t;λ) vanishing at t = a. This problem may well be called a singular eigenvalue problem, since requiring x0(t;λ) to be a principal solution can be considered as a boundary co...
متن کاملLecture 18: Ordinary Differential Equations: Second Order
2. General Remarks Second order ODEs are much harder to solve than first order ODEs. First of all, a second order linear ODE has two linearly independent solutions and a general solution is a linear combination of these two solutions. In addition, many popular second order ODEs have singular points. Except for a few cases, the solutions have no simple mathematical expression. However, there is ...
متن کاملOn the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملVirtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations
For a higher order linear ordinary differential operator P , its Stokes curve bifurcates in general when it hits another turning point of P . This phenomenon is most neatly understandable by taking into account Stokes curves emanating from virtual turning points, together with those from ordinary turning points. This understanding of the bifurcation of a Stokes curve plays an important role in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1977
ISSN: 0386-5991
DOI: 10.2996/kmj/1138833574